Sustainability and dynamics of outcrop-to-outcrop hydrothermal circulation

  • Post author:
  • Post category:
  • Post comments:0 Comments

Most seafloor hydrothermal circulation occurs far from the magmatic influence of mid-ocean ridges, driving large flows of water, heat and solutes through volcanic rock outcrops on ridge flanks. Here we create three-dimensional simulations of ridge–flank hydrothermal circulation, flowing between and through seamounts, to determine what controls hydrogeological sustainability, flow rate and preferred flow direction in these systems. We find that sustaining flow between outcrops that penetrate less-permeable sediment depends on a contrast in transmittance (the product of outcrop permeability and the area of outcrop exposure) between recharging and discharging sites, with discharge favoured through less-transmissive outcrops. Many simulations include local discharge through outcrops at the recharge end of an outcrop-to-outcrop system. Both of these characteristics are observed in the field. In addition, smaller discharging outcrops sustain higher flow rates than larger outcrops, which may help to explain how so much lithospheric heat is extracted globally by this process.

Continue ReadingSustainability and dynamics of outcrop-to-outcrop hydrothermal circulation

City footprints and SDGs provide untapped potential for assessing city sustainability

  • Post author:
  • Post category:
  • Post comments:0 Comments

Cities are recognised as central to determining the sustainability of human development. However, assessment concepts that are able to ascertain whether or not a city is sustainable are only just emerging. Here we review literature since the Sustainable Development Goals (SDGs) were agreed in 2015 and identify three strands of scientific inquiry and practice in assessing city sustainability. We find that further integration is needed. SDG monitoring and assessment of cities should take advantage of both consumption-based (footprint) accounting and benchmarking against planetary boundaries and social thresholds in order to achieve greater relevance for designing sustainable cities and urban lifestyles.

Continue ReadingCity footprints and SDGs provide untapped potential for assessing city sustainability

Artificial Photosynthesis Would Unify the Electricity-Carbohydrate-Hydrogen Cycle for Sustainability

  • Post author:
  • Post category:
  • Post comments:0 Comments

Sustainable development requires balanced integration of four basic human needs – air (O2/CO2), water, food, and energy. To solve key challenges, such as CO2 fixation, electricity storage, food production, transportation fuel production, water conservation or maintaining an ecosystem for space travel, we wish to suggest the electricity-carbohydrate-hydrogen (ECHo) cycle, where electricity is a universal energy carrier, hydrogen is a clean electricity carrier, and carbohydrate is a high-energy density hydrogen (14.8 H2 mass% or 11-14 MJ electricity output/kg)carrier plus a food and feed source. Each element of this cycle can be converted to the other reversibly & efficiently depending on resource availability, needs, and costs. In order to implement such cycle, here we propose to fix carbon dioxide by electricity or hydrogen to carbohydrate (starch) plus ethanol by cell-free synthetic biology approaches. According to knowledge in the literature, the proposed artificial photosynthesis must be operative. Therefore, collaborations are urgently needed to solve several technological bottlenecks before large-scale implementation.

Continue ReadingArtificial Photosynthesis Would Unify the Electricity-Carbohydrate-Hydrogen Cycle for Sustainability