by

T

here’s a bucolic beauty to Carmen Fernholz’s farm in Madison, Minnesota. Exploring his 400 acres near the state’s western edge means traversing fields of corn, soybeans, barley, buckwheat, and alfalfa.

Not far away, cover crops of red clover, purpletop radish, and yellow sunflower blanket the land alongside a pasture where cows graze and naturally fertilize the soil. His daughter Katie tends a vegetable garden and recently planted pear, cherry, and hazelnut trees. Another 50 acres that’s been set aside as wetland and restored prairie provides a verdant habitat for deer, pheasants, and other wildlife. Early each morning, the air is alive with insects and birds. “This time of year, you can smell the pollen from the corn,” says Fernholz. “And in the springtime, we’ve got lilacs planted along our fence line, and you have the light breezes and the smell of lilac in the air.”

Further afield, you come across 150 acres of a crop that, though seemingly unimpressive, is helping reverse the damage wrought by modern agriculture and climate change: a perennial grain called Kernza. Don Wyse, an agronomy professor at the University of Minnesota, approached Carmen in 2010 to ask if he’d be interested in growing something that would enhance soil and water quality on his organic, regenerative farm. Fernholz readily agreed. “Learning through experience and experimentation has always been exciting for me, but also learning about what the potential for this crop is,” he says.

Almost all the wheat cultivated in the U.S. is an annual variety, meaning it must be planted anew every year. That requires tilling the soil, destroying the ecosystem within. Perennial crops, on the other hand, are sown, harvested from, and allowed to continue growing year after year. Because the soil sustaining them remains undisturbed, the roots reach deep into the earth, enriching a microbial world as diverse and rich as coral reefs.

A thriving soil ecosystem stores a lot of carbon dioxide, helping offset climate change. Tim Crews, a soil ecologist for the nonprofit agriculture-research organization The Land Institute, says the root systems of perennial crops pull in “far more carbon” than those of annuals because they’re much larger and deeper. They then leech as much as half of that carbon into the ground, feeding microbes like fungi, bacteria, and nematodes, which in turn provide nutrients to crops. Soil hosting perennial crops retains those nutrients and water more efficiently, making the ecosystem more resistant to increasingly common droughts, floods, and erosion. It also absorbs fertilizers and pesticides more effectively, minimizing runoff into watersheds.

Given that, farmers, field researchers, and others dedicated to sustainable agriculture are experimenting with perennial crops. Kernza, the domesticated wild perennial grass growing on Fernholz’s spread, is the most famous of them. It already appears in bread, beer, and other products. Perennial wheat, lentils, and camelina, which can be refined into cooking oil, are gaining ground. It will be many years before they are widespread, but even now they are restoring a measure of ecological stability to the land.

Their success will require a cultural shift and a rethinking of how the U.S. government supports agriculture, but such changes are taking root. “When I look back from 2011 until now and see how interest is growing, how acreage is growing, and how buyers are really becoming interested in it,” Fernholz says. “Those are the things that keep me going and wanting to do more and more along these lines.”

A sustainable grain system resembles a prairie, which, like most natural ecosystems, is a perennial polyculture. This landscape began to change with the dawn of the Agricultural Revolution some 10,000 years ago when humanity domesticated livestock and planted monocultures that grew quickly and produced high yields. Today, grains like wheat, corn, and rice cover 70 percent of the world’s cropland and account for 70 percent of the calories consumed worldwide. The immense scale of industrial agriculture has made it one of the leading causes of carbon emissions, deforestation, and biodiversity loss.

Today, just 3 percent of North America’s tallgrass prairie remains. Much of it was plowed under to create farmland. Crews says this released as much as 70 percent of the carbon that had been accumulated over millennia and, in time, robbed the land of its microbial life and nutrients. “If you take a perennial grain and you replace those annuals, you all of a sudden create the conditions that built the organic material that was lost,” he says. “If we converted the annual crops back to perennials, you would be able to accumulate a lot of that carbon that is currently up in the atmosphere.”

For more visit https://grist.org/fix/food-farming/perennial-crops-wheat-kernza-sustainable-alternative-agriculture/

©️2022 Deus Labs Ltd | All Rights Reserved

Privacy Policy

Log in with your credentials

or    

Forgot your details?

Create Account